
Making the Case for Software Development with AI
Tue, 12 Sep 2023 00:50:39 -0000
|Read Time: 0 minutes
There are an astounding number of use cases for artificial intelligence (AI), across nearly every industry and spanning outcomes that range from productivity to security to user experience and more. Many of these use cases are discussed in a Dell white paper on Generative AI in the Enterprise, a collaboration with NVIDIA that enables high performance, scalable, and modular architectures for generative AI solutions.
Some of the most impactful use cases to date are in the field of software development. Here, AI can be used for tasks such as automating code development, detecting issues, correcting erroneous code, and assisting coders. AI can provide suggestions and automated code completion.
One remarkable solution at the forefront of this AI-driven transformation is Codeium Enterprise, a high-quality, enterprise-grade, and exceptionally performant AI-powered code acceleration toolkit. A unique aspect of Codeium Enterprise is that it can be deployed entirely on-premises using Dell hardware. This solution offers enterprises a competitive advantage through faster development in their software teams, with minimal setup and maintenance requirements.
Codeium Enterprise Essentials
Codeium Enterprise is designed to address the key challenges faced by businesses aiming to enhance worker productivity in software development. It leverages industry-leading generative AI capabilities but is accessible to developers without requiring pre-existing AI expertise.
Codeium can be used with existing codebases or for generating new code and offers several essential capabilities including:
- Personalized Coding Assistance: Codeium Enterprise is a personalized AI-powered assistant tailored to enterprise software development teams.
- Industry-Leading Generative AI: It leverages industry-leading generative AI capabilities to enhance developer productivity across the entire software development life cycle.
- Ease of Use: Codeium Enterprise is accessible to developers without requiring pre-existing AI expertise. It can be used with existing codebases or for generating new code.
Codeium Enterprise builds upon the base Codeium Individual product, used by hundreds of thousands of developers. Codeium Individual provides features like autocomplete, chat, and search to assist developers throughout the software development process. The toolkit seamlessly integrates into more than 40 Integrated Development Environments (IDEs) for over 70 programming languages.
Codeium Enterprise on Dell Infrastructure
Collaborating with Dell Technologies, Codeium offers powerful yet affordable hardware configurations that are satisfactory for running Codeium Enterprise on-premises. This approach ensures that both intellectual property and data remain secure within the enterprise's environment.
Dell Technologies can power Codeium Enterprise with PowerEdge servers of various GPU configurations, depending on your development teams’ sizes. Larger development teams can use multiple servers since Codeium is a horizontally scalable system and supports multinode deployments.
Dell Experience
During the initial deployment to software developers within Dell, the results were overwhelmingly positive. After two brief weeks of use following the initial rollout, developers were polled and reported the following feedback:
- 78% of developers reported creating the first revision of code more quickly.
- 89% reported decreased context switching and improved flow state (“being in the zone”).
- 92% reported improved productivity overall.
- 100% wanted to continue using the toolset.
Did we say that the results were overwhelmingly positive?
Conclusion
In a rapidly evolving technological landscape, generative AI holds the potential to revolutionize software development. Codeium Enterprise, running on Dell infrastructure, provides a comprehensive solution designed to meet the requirements of enterprises. It can enhance developer productivity, ensure data and IP security, adhere to licensing compliance, offers transparency through analytics, and minimizes costs. Codeium Enterprise is a great choice for enterprises seeking to leverage generative AI for productivity while maintaining control and security in their software development.
Incorporating Codeium Enterprise into your software development processes is not just a competitive advantage; it is a strategic move towards staying at the forefront of innovation in the software industry.
For more information, view the joint Solution Brief or contact the Codeium team.
Related Blog Posts

Dell Technologies Shines in MLPerf™ Stable Diffusion Results
Wed, 06 Dec 2023 17:33:43 -0000
|Read Time: 0 minutes
Abstract
The recent release of MLPerf Training v3.1 results includes the newly launched Stable Diffusion benchmark. At the time of publication, Dell Technologies leads the OEM market in this performance benchmark for training a Generative AI foundation model, especially for the Stable Diffusion model. With the Dell PowerEdge XE9680 server submission, Dell Technologies is differentiated as the only vendor with a Stable Diffusion score for an eight-way system. The time to converge by using eight NVIDIA H100 Tensor Core GPUs is 46.7 minutes.
Overview
Generative AI workload deployment is growing at an unprecedented rate. Key reasons include increased productivity and the increasing convergence of multimodal input. Creating content has become easier and is becoming more plausible across various industries. Generative AI has enabled many enterprise use cases, and it continues to expand by exploring more frontiers. This growth can be attributed to higher resolution text to image, text-to-video generations, and other modality generations. For these impressive AI tasks, the need for compute is even more expansive. Some of the more popular generative AI workloads include chatbot, video generation, music generation, 3D assets generation, and so on.
Stable Diffusion is a deep learning text-to-image model that accepts input text and generates a corresponding image. The output is credible and appears to be realistic. Occasionally, it can be hard to tell if the image is computer generated. Consideration of this workload is important because of the rapid expansion of use cases such as eCommerce, marketing, graphics design, simulation, video generation, applied fashion, web design, and so on.
Because these workloads demand intensive compute to train, the measurement of system performance during their use is essential. As an AI systems benchmark, MLPerf has emerged as a standard way to compare different submitters that include OEMs, accelerator vendors, and others in a like-to-like way.
MLPerf recently introduced the Stable Diffusion benchmark for v3.1 MLPerf Training. It measures the time to converge a Stable Diffusion workload to reach the expected quality targets. The benchmark uses the Stable Diffusion v2 model trained on the LAION-400M-filtered dataset. The original LAION 400M dataset has 400 million image and text pairs. A subset of those images (approximately 6.5 million) is used for training in the benchmark. The validation dataset is a subset of 30 K COCO 2014 images. Expected quality targets are FID <= 90 and CLIP>=0.15.
The following figure shows a latent diffusion model[1]:
Figure 1: Latent diffusion model
[1] Source: https://arxiv.org/pdf/2112.10752.pdf
Stable Diffusion v2 is a latent diffusion model that combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. MLPerf Stable Diffusion focuses on the U-Net denoising network, which has approximately 865 M parameters. There are some deviations from the v2 model. However, these adjustments are minor and encourage more submitters to make submissions with compute constraints.
The submission uses the NVIDIA NeMo framework, included with NVIDIA AI Enterprise, for secure, supported, and stable production AI. It is a framework to build, customize, and deploy generative AI models. It includes training and inferencing frameworks, guard railing toolkits, data curation tools, and pretrained models, offering enterprises an easy, cost effective, and a fast way to adopt generative AI.
Performance of the Dell PowerEdge XE9680 server and other NVIDIA-based GPUs on Stable Diffusion
The following figure shows the performance of NVIDIA H100 Tensor Core GPU-based systems on the Stable Diffusion benchmark. It includes submissions from Dell Technologies and NVIDIA that use different numbers of NVIDIA H100 GPUs. The results shown vary from eight GPUs (Dell submission) to 1024 GPUs (NVIDIA submission). The following figure shows the expected performance of this workload and demonstrates that strong scaling is achievable with less scaling loss.
Figure 2: MLPerf Training Stable Diffusion scaling results on NVIDIA H100 GPUs from Dell Technologies and NVIDIA
End users can use state-of-the-art compute to derive faster time to value.
Conclusion
The key takeaways include:
- The latest released MLPerf Training v3.1 measures Generative AI workloads like Stable Diffusion.
- Dell Technologies is the only OEM vendor to have made an MLPerf-compliant Stable Diffusion submission.
- The Dell PowerEdge XE9680 server is an excellent choice to derive value from Image Generation AI workloads for marketing, art, gaming, and so on. The benchmark results are outstanding for Stable Diffusion v2.
MLCommons Results
https://mlcommons.org/benchmarks/training/
The preceding graphs are MLCommons results for MLPerf IDs 3.1-2019, 3.1-2050, 3.1-2055, and 3.1-2060.
The MLPerf™ name and logo are trademarks of MLCommons Association in the United States and other countries. All rights reserved. Unauthorized use strictly prohibited. See www.mlcommons.org for more information.

Dell PowerEdge Servers Achieve Stellar Scores with MLPerf™ Training v3.1
Wed, 08 Nov 2023 17:43:48 -0000
|Read Time: 0 minutes
Abstract
MLPerf is an industry-standard AI performance benchmark. For more information about the MLPerf benchmarks, see Benchmark Work | Benchmarks MLCommons.
Today marks the release of a new set of results for MLPerf Training v3.1. The Dell PowerEdge XE9680, XE8640, and XE9640 servers in the submission demonstrated excellent performance. The tasks included image classification, medical image segmentation, lightweight and heavy-weight object detection, speech recognition, language modeling, recommendation, and text to image. MLPerf Training v3.1 results provide a baseline for end users to set performance expectations.
What is new with MLPerf Training 3.1 and the Dell Technologies submissions?
The following are new for this submission:
- For the benchmarking suite, a new benchmark was added: stable diffusion with the Laion400 dataset.
- Dell Technologies submitted the newly introduced Liquid Assisted Air Cooled (LAAC) PowerEdge XE9640 system, which is a part of the latest generation Dell PowerEdge servers.
Overview of results
Dell Technologies submitted 30 results. These results were submitted using five different systems. We submitted results for the PowerEdge XE9680, XE8640, and XE9640 servers. We also submitted multinode results for the PowerEdge XE9680 and XE8640 servers. The PowerEdge XE9680 server was powered by eight NVIDIA H100 Tensor Core GPUs, while the PowerEdge XE8640 and XE9640 servers were powered by four NVIDIA H100 Tensor Core GPUs each.
Datapoints of interest
Interesting datapoints include:
- Our new stable diffusion results with the PowerEdge XE9680 server have been submitted for the first time and are exclusive. Dell Technologies, NVIDIA, and Habana Labs are the only submitters to have made an official submission. This submission is important because of the explosion of Generative AI workloads. The submission uses the NVIDIA NeMo framework, included in NVIDIA AI Enterprise for secure, supported, and stable production AI.
- Dell PowerEdge XE8640 and XE9640 servers secured several top performer titles (#1 titles) among other systems equipped with four NVIDIA H100 GPUs. The tasks included language modeling, recommendation, heavy-weight object detection, speech to text, and medical image segmentation.
- A number of multinode results were submitted for the previous round, which can be compared with this round. PowerEdge XE9680 multinode results were submitted. Additionally, this round was the first time multinode results with the newer generation PowerEdge XE8640 servers were submitted. The results show near linear scaling. Furthermore, Dell Technologies is the only submitter in addition to NVIDIA, Habana Labs, and Intel making multinode, on-premises result submissions.
- The results for the PowerEdge XE9640 server with liquid assisted air cooling (LAAC) are similar to the PowerEdge XE8640 air-cooled server.
The following figure shows all the convergence times for Dell systems and corresponding workloads in the benchmark. Because different benchmarks are included in the same graph, the y axis is expressed logarithmically. Overall, these numbers show an excellent time to converge for the workload in question.
Figure 1. Logarithmic y axis: Overview of Dell MLPerf Training v3.1 results
Conclusion
We submitted compliant results for the MLCommons Training v3.1 benchmark. These results are based on the latest generation of Dell PowerEdge XE9680, XE8640, and XE9640 servers, powered by NVIDIA H100 Tensor Core GPUs. All results are stellar. They demonstrate that multinode scaling is linear and that more servers can help to solve the same problem faster. Different results allow end users to make decisions about expected performance before deploying their compute-intensive training workloads. The workloads in the submission include image classification, medical image segmentation, lightweight and heavy-weight object detection, speech recognition, language modeling, recommendation, and text to image. Enterprises can enable and maximize their AI transformation with Dell Technologies efficiently with Dell solutions.
MLCommons Results
https://mlcommons.org/benchmarks/training/
The preceding graphs are MLCommons results for MLPerf IDs from 3.1-2005 to 3.1-2009.
The MLPerf™ name and logo are trademarks of MLCommons Association in the United States and other countries. All rights reserved. Unauthorized use strictly prohibited. See www.mlcommons.org for more information.