Home > AI Solutions > Artificial Intelligence > Guides > Design Guide—Implementing a Digital Assistant with Red Hat OpenShift AI on Dell APEX Cloud Platform > Document embeddings
This section describes the procedure to store domain specific documents embeddings in the Redis vector store.
This section provides an example on how to ingest web document content into a Redis vector store.
Note: To ingest PDF documents content into Redis vector store, follow this procedure.
Requirements to create an index include a Redis cluster and a Redis database with at least 2GB of memory (to match with the initial index cap).
# Base parameters, the Redis information:
redis_url = "redis://server:port" index_name = "dellwebdocs"
# Imports:
from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores.redis import Redis
# Ingesting new documents:
loader = WebBaseLoader(["https://infohub.delltechnologies.com/l/design-guide-sql-server-2022-database-solution-with-object-storage-on-dell-hardware-stack/business-challenge-193/", "https://infohub.delltechnologies.com/l/design-guide-sql-server-2022-database-solution-with-object-storage-on-dell-hardware-stack/solution-introduction-81/", "https://infohub.delltechnologies.com/l/design-guide-sql-server-2022-database-solution-with-object-storage-on-dell-hardware-stack/design-guide-introduction-28/" ]) data = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=40) all_splits = text_splitter.split_documents(data) embeddings = HuggingFaceEmbeddings() rds = Redis.from_existing_index(embeddings, redis_url=redis_url, index_name=index_name schema="dellwebdocs_redis_schema.yaml") rds.add_documents(all_splits)
# Write the schema to a yaml file to be able to open the index later:
rds.write_schema("redis_schema.yaml")