
Dell Technologies and Deloitte DataPaaS: Data Platform as a Service
Tue, 26 May 2020 14:13:30 -0000
|Read Time: 0 minutes
The Dell Technologies and Deloitte alliance combines Dell Technologies leading infrastructure software, and services with Deloitte’s ability to deliver solutions, to drive digital transformation for our mutual clients.
DataPaaS enables enterprise deployment and adoption of Deloitte best practice data analytics platforms for use cases such as Financial Services, Cyber Security, Business Analytics, IT Operations and IoT.
Why choose Dell Technologies and Deloitte
Best-in-class capabilities: The Dell Technologies and Deloitte alliance draws on strengths from each organization with the goal of providing best-in-class technology solutions to customers.
Strong track record of success: For years Dell Technologies and Deloitte have successfully worked together to help solve enterprise customers‘ most complex infrastructure, technology, cloud strategy, and business challenges.
Strategic approach: Successful engagements with a large, diverse group of customers have demonstrated the importance of taking a strategic approach to technology, solution design, integrations, and implementation.
Dell Technologies collaborates with Deloitte to deliver data analytics at scale, allowing customers to focus on outcomes, use cases and value
Keeping up with the demands of a growing data platform can be a real challenge. Getting data on-boarded quickly, deploying and scaling infrastructure, and managing users reporting and access demands becomes increasingly difficult. DataPaaS employs Deloitte’s best practise D8 Methodology to orchestrate the deployment, management and adoption of an organisation wide data platform.
- “Splunk as a Platform” enabling data reuse and analytics across the business
- On-premise, Cloud or Hybrid – route data to the most cost-effective option or depending on Information Governance policies
- DataPaaS delivers a catalog of use-cases that can be deployed in minutes…not days or weeks
- Free up and retain specialist resources - move from troubleshooting and management of the platform, to getting value out of the data in the platform
- True DevOps, using CICD, spin up and destroy full environments as needed
- Enforce and maintain consistent configuration, continuously synced enabling simple recovery
- Data Acquisition Channel for rapid and automated data onboarding and routing
- DataPaaS enables Data DevOps; 5x faster, at 50% of the cost with 100% control and 8x the return on investment
Find out more
- Dell Technologies and Deloitte DataPaaS Data Platform as a Service
- Dell technologies and Deloitte DataPaaS Pandemic Support for Government Crisis Management
- Dell Technologies and Deloitte DataPaaS Risk Management Analytics for Real-Time Decision Making
Contact us
Asia Pacific region
Stuart Hirst
Partner
Deloitte Risk Advisory Pty Ltd
shirst@deloitte.com.au
+612 487 471 729 @convergingdata
United States region
Todd Wingler
Business Development Executive
Deloitte Risk and Financial Advisory
twingler@deloitte.com
+1 480 232-8540 @twingler
EMEA region
Nicola Esposito
Partner
Deloitte Cyber
niesposito@deloitte.es
+34 918232431 @nicolaesposito
Chris Belsey
ISV Strategy & Alliances, Global Alliances
Dell Technologies
chris.belsey@dell.com
+44 75 0088 0803 @chrisbelseyemc
Byron Cheng
High Value Workloads Leader, Global Alliances
Dell Technologies
byron.cheng@dell.com
+1 949 241 6328 @byroncheng1
Related Blog Posts

Real-Time Streaming Solutions Beyond Data Ingestion
Wed, 16 Dec 2020 22:31:30 -0000
|Read Time: 0 minutes
So, it has been all about data—data at rest, data in-flight, IoT data, and so forth. Let’s touch base on the traditional data processing approaches and look at their synergy with modern database technologies. Users’ model-based inquiries manifest to a data entity that is created upon initiation of the request payloads. Traditional database and business applications have been the lone actors that collaborated to provide implementations of such data models. They interact in processing of the users’ inquiries and persisting the results in static data stores for further updates. The business continuity is measured by a degree of such activities among business applications consuming data from these shared data stores. Of course, with a lower degree of such activities, there exists a high potential for the business to be at idle states of operations caused by waiting for more data acquisitions.
The above paradigm is inherently set to potentially miss a great opportunity to maintain a higher degree of business continuity. To fill these gaps, a shift in the static data store paradigm is necessary. The new massive ingested data processing requirements mandate the implementation of processing models that continuously generate insight from any “data in-flight,” mostly in real time. To overcome storage access performance bottlenecks, persisting the interim computed results in a permanent data store is expected to be kept at a minimal level.
This blog addresses these modern data processing models from a real-time streaming ingestion and processing perspective. In addition, it discusses Dell Technologies’ offerings of such models in detail.
Customers have an option of building their own solutions based on the open source projects for adopting real-time streaming analytics technologies. The mix and match of such components to implement real-time data ingestion and processing infrastructures is cumbersome. It requires a variety of costly skills to stabilize such infrastructures in production environments. Dell Technologies offers validated reference architectures to meet target KPIs on storage and compute capacities to simplify these implementations. The following sections provide high-level information about real-time data streaming and popular platforms to implement these solutions. This blog focuses particularly on two Ready Architecture solutions from Dell—Streaming Data Platform (formerly known as Nautilus) and a Real-Time Streaming reference architecture based on Confluent’s Kafka ingestion platform—and provides a comparative analysis of the platforms.
Real-time data streaming
The topic of real-time data streaming goes far beyond ingesting data in real time. Many publications clearly describe the compelling objectives behind a system that ingests millions of data events in real time. An article from Jay Kreps, one of the co-creators of open source Apache Kafka, provides a comprehensive and in-depth overview of ingesting real-time streaming data. This blog focuses on both ingestion and the processing side of the real-time streaming analytics platforms.
Real-time streaming analytics platforms
A comprehensive end-to-end big data analytics platform demands must-have features that:
- Simplify the data ingestion layer
- Integrate seamlessly with other components in the big data ecosystem
- Provide programming model APIs for developing insight-analytics applications
- Provide plug-and-play hooks to expose the processed data to visualization and business intelligence layers
Over the past many years, demand for real-time ingestion features have created motivations for implementing several streaming analytics engines, each with a unique targeted architecture. Streaming analytics engines provide capabilities ranging from micro-batching the streamed data during processing to a near-real-time performance to a true-real-time processing behavior. The ingested datatype may range from a byte-stream event to a complex event format. Examples of such data size ingestion engines are Dell Technologies supported Pravega and open source Apache 2.0 Kafka that can be seamlessly integrated with open source big data analytics engines such as Samza, Spark, Flink, and Storm, to name a few. Proprietary implementations of similar technologies are offered by a variety of vendors. A short list of these products includes Striim, WSO2 Complex Event processor, IBM Streams, SAP Event Stream Processor, and TIBCO Event Processing.
Real-time streaming analytics solutions: A Dell Technologies strategy
Dell Technologies offer customers two solutions to implement their real-time streaming infrastructure. One solution is built on Apache Kafka as the ingestion layer and Kafka Stream Processing as the default streaming data processing engine. The second solution is built on open source Pravega as the ingestion layer and Flink as the default real-time streaming data processing engine. But how are these solutions being used in response to customers’ requirements? Let’s review possible integration patterns where Dell Technologies real-time streaming offerings facilitate data ingestion and partial preprocessing layers for implementing these patterns.
Real-time streaming and big data processing patterns
Customers implement real-time streaming in different ways to meet their specific requirements. This implies that there may exist many ways of integrating a real-time streaming solution, with the remaining components in the customer’s infrastructure ecosystem. Figure 1 depicts a minimal big data integration pattern that customers may implement by mixing and matching a variety of existing streaming, storage, compute, and business analytics technologies.
Figure 1: A modern big data integration pattern for processing real-time ingested data
There are several options to implement the Stream Processors layer, including the following two offerings from Dell Technologies.
Dell EMC–Confluent Ready Architecture for Real-Time Data Streaming
The core component of this solution is Apache Kafka, which also delivers Kafka Stream Processing in the same package. Confluent provides and supports the Apache Kafka distribution along with Confluent Enterprise-Ready Platform with advanced capabilities to improve Kafka. Additional community and commercial platform features enable:
- Accelerated application development and connectivity
- Event transformations through stream processing
- Simplified enterprise operations at scale and adherence to stringent architectural requirements
Dell Technologies provides infrastructure for implementing stream processing deployment architectures using one of two Kafka distributions from Confluent—Standard Cluster Architecture or Large Cluster Architecture. Both cluster architectures may be implemented as either the streaming branch of a Lambda Architecture or as the single process flow engine in a Kappa Architecture. For a description of the difference between the two architectures, see this blog. For more details about the product, see Dell Real-Time Big Data Streaming Ready Architecture documentation.
- Standard Cluster Architecture: This architecture consists of two Dell EMC PowerEdge R640 servers to provide resources for Confluent’s Control Center, three R640 servers to host Kafka Brokers, and two R640 servers to provide compute and storage resources for Confluent’s higher-level KSQL APIs leveraging the Apache Kafka Stream Processing engine. The Kafka Broker nodes also host the Kafka Zookeeper and the Kafka Rebalancer applications. Figure 2 depicts the Standard Cluster Architecture.
Figure 2: Standard Dell Real-Time Streaming Big Data Cluster Architecture
- Large Cluster Architecture: This architecture consists of two PowerEdge R640 servers to provide resources for Confluent’s Control Center, a configurable number of R640 servers for scalability to host Kafka Brokers, and a configurable number of R640 servers to provide compute and storage resources for Confluent’s KSQL APIs to the implementation of the Apache Kafka Stream Processing engine. The Kafka Broker nodes also host the Kafka Zookeeper and the Kafka Rebalancer applications. Figure 3 depicts the Standard Cluster Architecture.
Figure 3: Large Scalable Dell Real-Time Streaming Big Data Cluster Architecture
Dell EMC Streaming Data Platform (SDP)
SDP is an elastically scalable platform for ingesting, storing, and analyzing continuously streaming data in real time. The platform can concurrently process both real-time and collected historical data in the same application. The core components of SDP are open source Pravega for ingestion, Long Term Storage, Apache Flink for compute, open source Kubernetes, and a Dell Technologies proprietary software known as Management Platform. Figure 4 shows the SDP architecture and its software stack components.
Figure 4: Streaming Data Platform Architecture Overview
- Open source Pravega provides the ingestion and storage artifacts by implementing streams built from heterogeneous datatypes and storing them as appended “segments.” The classes of Unstructured, Structured, and Semi-Structured data may range from a small number of bytes emitted by IoT devices, to clickstreams generated from the users while they surf websites, to business applications’ intermediate transaction results, to virtually any size complex events. Briefly, SDP offers two options for Pravega’s persistent Long Term Storage: Dell EMC Isilon and Dell EMC ECS S3. These storage options are mutually exclusive—that is, both cannot be used in the same SDP instance. Currently, upgrading from one to another is yet to be supported. For details on Pravega and its role in providing storage for SDP streams using Isilon or ECS S3, refer to this Pravega webinar.
- Apache Flink is SDP’s default event processing engine. It consumes ingested streamed data from Pravega’s storage layer and processes it in an instance of a previously implemented data pipeline application. The pipeline application invokes Flink DataStream APIs and processes continuous unbounded streams of data in real time. Alternatives to Flink analytics engines, such as Apache Spark, are also available. To unify multiple analytics engines’ APIs and to prevent writing multiple versions of the same data pipeline application, an attempt is underway to add Apache Beam APIs to SDP to allow the implementation of one Flink data pipeline application that can run on multiple underlying engines on demand.
Comparative analysis: Dell EMC real-time streaming solutions
Both Dell EMC real-time streaming solutions address the same problem and ultimately provide the same solution for it. However, in addition to using different technology implementations, each tends to be a better fit for certain streaming workloads. The best starting point for selecting one over the other is with an understanding of the exactions of the target use case and workload.
In most situations, users know what they want for a real-time ingestion solution—typically an open-source solution that is popular in the industry. Kafka is demanded by customers in most of these situations. Additional characteristics, such as the mechanisms for receiving and storing events and for processing, are secondary. Most of our customer conversations are about a reliable ingestion layer that can guarantee delivery of the customer’s business events to the consuming applications. Further detailed expectations are focused on no loss of events, simple yet long-term storage capacity, and, in most cases, a well-defined process integration method for implementing their initial preprocessing tasks such as filtering, cleansing, and any transformation-like Extract Transform Load (ETL). The purpose of preprocessing is to offload nonbusiness-logic-related work from the target analytics engine—i.e., Spark, Flink, Kafka Stream Processing—resulting in better overall end-to-end real-time performance.
Kafka and Pravega in a nutshell
Kafka is essentially a messaging vehicle to decouple the sender of the event from the application that processes it for gaining business insight. By default, Kafka uses the local disk for temporarily persisting the incoming data. However, the longer-term storage for the ingested data is implemented in what’s known as Kafka Broker Servers. When an event is received, it is broadcast to the interested applications known as subscribers. An application may subscribe to more than one event-type-group, also known as a topic. By default, Kafka stores and replicates events of a topic in partitions configured in Kafka Brokers. The replicas of an event may be distributed among several Brokers to prevent data loss and guarantee recovery in case of a failover. A Broker cluster may be constructed and configured on several Dell EMC PowerEdge R640 servers. To avoid Brokers’ storage and compute capacity limitations, the Brokers’ cluster may be extended through the addition of more Brokers to the cluster topology. This is a horizontally scalable characteristic of Kafka architecture. By design, the de facto analytics engine provided in an open source Kafka stack is known as Kafka Stream Processing. It is customary to use Kafka Stream Processing as a preprocessing engine and then route the results as real-time streaming artifacts to an actual business logic implementing analytics engine such as Flink or Spark Streaming. Confluent wraps the Kafka Stream Processing implementation in an abstract process layer known as KSQL APIs. It makes it extremely simple to run SQL like statements to process events in the core Kafka Stream Processing engine instead of complex third-generation languages such as Java or C++, or scripting languages such as Python.
Unlike Kafka’s messaging protocol and events persisting partitions, Pravega implements a storage protocol and starts to temporarily persist events as appended streams. As time goes by, and the events age, they become long-term data entities. Therefore, unlike Kafka, the Pravega architecture does not require separate long-term storage. Eventually, the historical data is available in the same storage. Pravega, in Dell’s current SDP architecture, routes previously appended streams to Flink, which provides a data pipeline to implement the actual business logic. When it comes to scalability, Pravega uses Isilon or ECS S3 as extended and/or archiving storage.
Although both SDP and Kafka act as a vehicle between the event sender and the event processor, they implement this transport differently. By design, Kafka implements the pub/sub pattern. It basically broadcasts the event to all interested applications at the same time. Pravega makes specific events available directly to a specific application by implementing a point-to-point pattern. Both Kafka and Pravega claim guaranteed delivery. However, the point-to-point approach supports a more rigid underlying transport.
Conclusion
Dell Technologies offers two real-time streaming solutions, and it is not a simple task to promote one over the other. Ideally, every customer problem requires an initial analysis on the data source, data format, data size, expected data ingestion frequency, guaranteed delivery requirements, integration requirements, transactional rollback requirements (if applicable), storage requirements, transformation requirements, and data structural complexity. Aggregated results from such analysis may help us suggest a specific solution.
Dell works with customers to collect as much detailed information as possible about the customer’s streaming use cases. Kafka Stream Processing has an impressive feature that offloads the transformation portion of the analytics of a pipeline engine such as Flink or Spark to its Kafka Stream Processing engine. This could be a great advantage. Meanwhile SDP requires extra scripting efforts outside of the Flink configuration space to provide the same logically equivalent capability. On the other hand, SDP simplifies storage complexities through Pravega native streams-per-segments architecture, while Kafka core storage logic pertains to a messaging layer that requires a dedicated file system. Customers that have IoT device data use cases are concerned with ingestion high frequency rate (number of events per second). Soon, we can use this parameter and provide some benchmarking results of a comparative analysis of ingestion frequency rate performed on our SDP and Confluent Real-Time Streaming solutions.
Acknowledgments
I owe an enormous debt of gratitude to my colleagues Mike Pittaro and Mike King of Dell Technologies. They shared their valuable time to discuss the nuances of the text, guided me to clarify concepts, and made specific recommendations to deliver cohesive content.
Author: Amir Bahmanyari, Advisory Engineer, Dell Technologies Data-Centric Workload & Solutions. Amir joined Dell Technologies Big Data Analytics team in late 2017. He works with Dell Technologies customers to build their Big Data solutions. Amir has a special interest in the field of Artificial Intelligence. He has been active in Artificial and Evolutionary Intelligence work since late 1980’s when he was a Ph.D. candidate student at Wayne State University, Detroit, MI. Amir implemented multiple AI/Computer Vision related solutions for Motion Detection & Analysis. His special interest in biological and evolutionary intelligence algorithms lead to innovate a neuron model that mimics the data processing behavior in protein structures of Cytoskeletal fibers. Prior to Dell, Amir worked for several startups in the Silicon Valley and as a Big Data Analytics Platform Architect at Walmart Stores, Inc.

The Case for Elastic Stack on HCI
Thu, 11 Jun 2020 21:34:33 -0000
|Read Time: 0 minutes
The Elastic Stack, also known as the “ELK Stack”, is a widely used, collection of software products based on open source used for search, analysis, and visualization of data. The Elastic Stack is useful for a wide range of applications including observability (logging, metrics, APM), security, and general-purpose enterprise search. Dell Technologies is an Elastic Technology Partner1 This blog covers some basics of hyper-converged infrastructure (HCI), some Elastic Stack fundamentals, and the benefits of deploying Elastic Stack on HCI.
HCI Overview
HCI integrates the compute and storage resources from a cluster of servers using virtualization software for both CPU and disk resources to deliver flexible, scalable performance and capacity on demand. The breadth of server offerings in the Dell PowerEdge portfolio gives system architects many options for designing the right blend of compute and storage resources. Local resources from each server in the cluster are combined to create virtual pools of compute and storage with multiple performance tiers.
VxFlex is a Dell Technologies developed, hypervisor agnostic, HCI platform integrated with high-performance, software-defined block storage. VxFlex OS is the software that creates a server and IP-based SAN from direct-attached storage as an alternative to a traditional SAN infrastructure. Dell Technologies also offers the VxRail HCI platform for VMware-centric environments. VxRail is the only fully integrated, pre-configured, and pre-tested VMware HCI system powered with VMware vSAN. We show below why both HCI offerings are highly efficient and effective platforms for a truly scalable Elastic Stack deployment.
Elastic Stack Overview
The Elastic Stack is a collection of four open-source projects: Elasticsearch, Logstash, Kibana, and Beats. Elasticsearch is an open-source, distributed, scalable, enterprise-grade search engine based on Lucene. Elasticsearch is an end-to-end solution for searching, analyzing, and visualizing machine data from diverse source formats. With the Elastic Stack, organizations can collect data from across the enterprise, normalize the format, and enrich the data as desired. Platforms designed for scale-out performance running the Elastic Stack provides the ability to analyze and correlate data in near real-time.
Elastic Stack on HCI
In March 2020, Dell Technologies validated the Elastic Stack running on our VxFlex family of HCI2. It will be shown how the features of HCI provide distinct benefits and cost savings as an integrated solution for the Elastic Stack. The Elastic Stack, and Elasticsearch specifically, is designed for scale-out. Data nodes can be added to an Elasticsearch cluster to provide additional compute and storage resources. HCI also uses a scale-out deployment model that allows for easy, seamless scalability horizontally by adding additional nodes to the cluster(s). However, unlike bare-metal deployments, HCI also scales vertically by adding resources dynamically to Elasticsearch data nodes or any other Elastic Stack roles through virtualization. VxFlex admins use their preferred hypervisor and VxFLEX OS and for VxRail it is done with VMware ESX and vSAN. Additionally, the Elastic Stack can be deployed on Kubernetes clusters, therefor admins can also choose to leverage VMware Tanzu for Kubernetes management.
Virtualization has long been a strategy for achieving more efficient resource utilization and data center density. Elasticsearch data nodes tend to have average allocations of 8-16 cores and 64GB of RAM. With the current ability to support up to 112 cores and 6TB of RAM in a single 2RU Dell server, Elasticsearch is an attractive application for virtualization. Additionally, the Elastic Stack is also significantly more CPU efficient than some alternative products improving the cost-effectiveness of deploying Elastic with VMware or other virtualization technologies. We would recommend sizing for 1 physical CPU to 1 virtual CPU (vCPU) for Elasticsearch Hot Tier along with the management and control plane resources. While this is admittedly like the VMware guidance for some similar analytics platforms, these VMs tend to consume a significantly smaller CPU footprint per data node. The Elastic Stack tends to take advantage of hyperthreading and resource overcommitment more effectively. While needs will vary by customer use case, our experience shows the efficiencies in the Elastic Stack and Elastic data lifecycle management allow the Elasticsearch Warm Tier, Kibana, and Proxy servers can be supported by 1 physical CPU to 2 vCPUs and the Cold Tier can be upwards of 4 vCPUs to a physical CPU.
Because Elasticsearch tiers data on independent data nodes versus multiple mount points on a single data node or indexer, the multiple types and classes of software-defined storage defined for independent HCI clusters can be easily leveraged between Elasticsearch clusters to address data temperatures. It should be noted that currently Elastic does not currently recommend any non-block storage (S3, NFS, etc.) as a target for Elasticsearch except as a target for Elasticsearch Snapshot and Restore. (It is possible to use S3 or NFS on Isilon or ECS as an example as a retrieval target for Logstash, but that is a subject for a later blog.) For example, vSAN in VxRail provides Optane, NVMe, SSD, and HDD storage options. A user can deploy their primary Elastic Stack environment with its Hot Elasticsearch data nodes, Kibana, and the Elastic Stack management and control plane on an all-flash VxRail cluster, and then leverage a storage dense hybrid vSAN cluster for Elasticsearch cold data.
Image 1. Example Logical Elastic Stack Architecture on HCI
Software-defined storage in HCI provides native enterprise capabilities including data encryption and data protection. Because FlexOS and vSAN provide HA via the software-defined storage, Replica Shards in Elastic for data protection are not required. Elastic will shard an index into 5 shards by default for processing, but Replica Shards for data protection are optional. Because we have data protection at the storage layer we did not use Replicas in our validation of VxFlex and we saw no impact on performance.
HCI enables customers to expand and efficiently manage the rapid adoption of an Elastic environment with dynamic resource expansion and improved infrastructure management tools. This allows for the rapid adoption of new use cases and new insights. HCI reduces datacenter sprawl and associated costs and inefficiencies related to the adoption of Elastic on bare metal. Ultimately HCI can deliver a turnkey experience that enables our customers to continuously innovate through insights derived by the Elastic Stack.
References
- Elastic Technology and Cloud Partners - https://www.elastic.co/about/partners/technology
- Elastic Stack Solution on Dell EMC VxFlex Family - https://www.dellemc.com/en-in/collaterals/unauth/white-papers/products/converged-infrastructure/elastic-on-vxflex.pdf
- Elasticsearch Sizing and Capacity Planning Webinar - https://www.elastic.co/webinars/elasticsearch-sizing-and-capacity-planning
About the Author
Keith Quebodeaux is an Advisory Systems Engineer and analytics specialist with Dell Technologies Advanced Technology Solutions (ATS) organization. He has worked in various capacities with Dell Technologies for over 20 years including managed services, converged and hyper-converged infrastructure, and business applications and analytics. Keith is a graduate of the University of Oregon and Southern Methodist University.
Acknowledgments
I would like to gratefully acknowledge the input and assistance of Craig G., Rakshith V., and Chidambara S. for their input and review of this blog. I would like to especially thank Phil H., Principal Engineer with Dell Technologies whose detailed and extensive advice and assistance provided clarity and focus to my meandering evangelism. Your support was invaluable. As with anything the faults are all my own.