
Computing on the Edge: NEBS Criteria Levels
Tue, 15 Nov 2022 14:43:44 -0000
|Read Time: 0 minutes
In our previous blogs, we’ve explored the type of tests involved to successfully pass the criteria of GR-63-CORE, Physical Protections, GR-1089-CORE, Electromagnetic Compatibility, and Electrical Safety. The goal of successfully completing these tests is to create Carrier Grade, NEBS compliant equipment. However, outside of highlighting the set of documents that compose NEBS, nothing is mentioned of the NEBS levels and the requirements to achieve each level. NEBS levels are defined in Special Report, SR-3580.
Figure 1. NEBS Certification LevelsNEBS Level 3 compliance is expected from most Telecom environments, outside of a traditional data center. So, what NEBS level do equipment manufacturers aim to achieve?
At first, I created Figure 1 as a pyramid, not inverted, with Level 1 as the base and Level 3 as the peak. However, I reorganized the graphic because Level 1 isn’t really a foundation, it is a minimum acceptable level. Let’s dive into what is required to achieve each NEBS certification level.
NEBS Level 1
NEBS Level 1 is the lowest level of NEBS certification. It provides the minimum level of environmental hardening and stresses safety criteria to minimize hazards for installation and maintenance administrators.
This level is the minimum acceptable level of NEBS environmental compatibility required to preclude hazards and degradation of the network facility and hazards to personnel.
This level includes the following tests:
- Fire resistance
- Radiated radiofrequency (RF)
- Electrical safety
- Bonding or grounding
Level 1 criteria does not assess Temperature/Humidity, Seismic, ESD or Corrosion.
Operability, enhanced resilience, and environmental tolerances are assessed in Levels 2 and 3.
NEBS Level 2
Figure 2. Map of Seismic Potential in the US
NEBS Level 2 assesses some environmental criteria, but the target deployment is in a “normal” environment, such as data center installations where temperatures and humidity are well controlled. These environments typically experience limited impacts of EMI, ESD, and EFTs, and have some protection from lightning, Surges and Power Faults. There is also some Seismic Testing performed on the EUT, but only to Zone 2. While there is no direct correlation between seismic zones and earthquake intensity, in the United States, zone 2 generally covers the Rocky Mountains, much of the West and parts Southeast and Northeast Regions.
NEBS Level 2 certification may be sufficient for some Central Office (CO) installations but is not sufficient for deployment to Far Edge or Cell Site Enclosures which can be exposed to environmental and electromagnetic extremes, or in regions covered by seismic zones 3 or 4.
NEBS Level 3
Figure 3. Level 3 criteria
NEBS Level 3 certification is the highest level of NEBS Certification and is the level that is expected by most North American telecom and network providers when specificizing equipment requirements for installation into controlled environments.
Level 3 is required to provide maximum assurance of equipment operability within the network facility environment.
Level 3 criteria are also suited for equipment applications that demand minimal service interruptions over the equipment’s life.
Full NEBS Level 3 certification can take from three to six months to complete. This includes prepping and delivering the hardware to the lab, test scheduling, performance, analysis of test results, and the production of the final report. If a failure occurs, systems can be redesigned for retesting.
Conclusion
While environmental, electrical, electromagnetic, and safety specifications described in NEBS Level 3 certification, it is the minimum required for deployment into a controlled telecom network environment; these specifications are only the beginning for outdoor deployments. The next blog in this series will explore more of these specifications such as GR-3108-CORE and general requirements for Network Equipment in Outside Plant (OSP). Stay tuned.
Related Blog Posts

Computing on the Edge: Other Design Considerations for the Edge – Part 1
Fri, 13 Jan 2023 19:46:50 -0000
|Read Time: 0 minutes
In past blogs, the requirements for NEBS Level 3 certifications were addressed, with even higher demands depending on the Outside Plant (OSP) installation requirements. Now, additional design considerations need to be considered, to create a hardware solution that is not only going to survive the environment at the edge, but provides a platform that can be effectively deployed to the edge.
Ruggedized Chassis Design
The first design consideration that we’ll cover for an Edge Server is the Ruggedized Chassis. This is certainly a chassis that can stand up to the demands of Seismic Zone 4 testing and can also withstand impacts, drops, and vibration, right?
Not necessarily.
While earthquakes are violent, demanding, but relatively short-duration events, the shock and vibration profile can differ significantly when the server is taken out from under the Cell Tower. We are talking beyond the base of the tower, and to edge environments that might be encountered in Private Wireless or Multi-Access Edge Compute (MEC) deployments. Some vibration and shock impacts are tested in GR-63-Core, under test criteria for Transportation and Packaging, but ruggedized designsFigure 1. Portable Edge Compute Platforms need to go beyond this level of testing.
For example, the need for ruggedized servers in mining or military environments, where setting up compute can be more temporary in nature and often includes the use of portable cases, such as Pelican Cases. These cases are subject to environmental stresses and can require ruggedized rails and upgraded mounting brackets on the chassis for those rails. For longer-lasting deployments, enclosures can be less than ideal and require all the requirements of a GR-3108 Class 2 device and perhaps some additional considerations.
Dell Technologies also tests our Ruggedized (XR-series) Servers to MIL-STD-810 and Marine testing specifications. In general, MIL-STD-810 temperature requirements are aligned with GR-63-CORE on the high side but test operationally down to -57C (-70F) on the low side. This reflects some extreme parts of the world where the military is expected to operate. But MIL-STD-810 also covers land, sea, and air deployments. This means that non-operational (shipping) criteria is much more in-depth, as are acceleration, shock, and vibration. Criteria includes scenarios, such as crash survivability, where the server can be exposed to up to 40Gs of acceleration. Of course, this tests not only the server, but the enclosure and mounting rails used in testing.
So why have I detoured onto MIL-STD and Marine testing? For one, it’s interesting in the extreme “dynamic” testing requirements that are not seen in NEBS. Secondly, creating a server that is survivable in MIL-STD and Marine environments is only complementary to NEBS and creates an even more durable product that has applications beyond the Cellular Network.
Server Form Factor
Figure 2. Typical Short Depth Cell Site EnclosureAnother key factor in chassis design for the edge is the form factor. This involves understanding the physical deployment scenarios and legacy environments, leading to a server form factor that can be installed in existing enclosures without the need for major infrastructure improvements. For servers, 19 inch rackmount or 2 post mounting is common, with 1U or 2U heights. But the key driver in the chassis design for compatibility with legacy telecom environments is short depth.
Server depth is not something covered by NEBS, but supplemental documentation created by the Telecoms, and typically reflected in RFPs, define the depth required for installation into Legacy Environments. For instance, AT&T’s Network Equipment Power, Grounding, Environmental, and Physical Design Requirements document states that “newer technology” deployed to a 2 post rack, which certainly applies to deployments like vRAN and MEC, “shall not” exceed 24 inches (609mm) in depth. This disqualifies most traditional rackmount servers.
The key is deployment flexibility. Edge Compute should be able to be mounted anywhere and adapt to the constraints of the deployment environment. For instance, in a space-constrained location, front maintenance is a needed design requirement. Often these servers will be installed close to a wall or mounted in a cabinet with no rear access. In addition, supporting reversible airflow can allow the server to adapt to the cooling infrastructure (if any) already installed.
Conclusion
While NEBS requirements focus on Environmental and Electrical Testing, ultimately the design needs to consider the target deployment environment and meet the installation requirements of the targeted edge locations.

Talking CloudIQ: PowerEdge
Wed, 08 Nov 2023 16:32:28 -0000
|Read Time: 0 minutes
Introduction
In my previous blogs, I have focused on a specific feature in CloudIQ. This blog talks about various CloudIQ features for Dell’s PowerEdge servers. Dell CloudIQ continues to expand its feature set for PowerEdge assets. CloudIQ integrates with Dell’s OpenManage Enterprise at each of your sites, to efficiently collect and aggregate telemetry data to give you a multisite, enterprise-wide view of all your PowerEdge servers and chassis. And with OpenManage Enterprise 4.0, onboarding your PowerEdge servers to CloudIQ is easier than ever!
Health, inventory, and performance
Since the introduction of PowerEdge support in CloudIQ, health, inventory, and performance monitoring for PowerEdge servers have all been available. CloudIQ provides an overall health score for each PowerEdge server and recommended remediation when an issue is identified. Inventory reporting provides numerous properties about each server, including contract status, component firmware versions, licensing information, and hardware listings to name a few. CloudIQ displays key performance metrics and not only shows historical trends but identifies performance anomalies and provides performance forecasting. This information allows you to see unexpected performance patterns, and plan future resource needs based on trending workloads.
Figure 1. Example of a performance forecasting chart for PowerEdge
Cybersecurity
Cybersecurity is a feature in CloudIQ that allows you to compare your existing security configuration settings to a predefined set of desired security configuration settings. The configuration is continuously monitored, notifying you when a configuration does not meet its desired setting. Cybersecurity monitors up to 31 server configuration settings and 18 chassis configuration settings tied to NIST security standards. Without automated continuous checking, it's impractical to manually check all settings on all servers every day. Lab tests show that it takes six minutes on average to manually check just 15 settings on a single server.
Users can also see a list of applicable Dell Security Advisories (DSAs) for their PowerEdge systems. By intelligently matching attributes like models and code versions, users can quickly see which DSAs are applicable to their systems, allowing them to take immediate action to remediate these security vulnerabilities.
Figure 2. The Security Assessment page for a PowerEdge chassis
System Management
You can now initiate BIOS and firmware updates for PowerEdge servers and chassis from CloudIQ. Users with a Server Admin role in CloudIQ can initiate these upgrades across multiple systems with just a few clicks. This feature simplifies the process of keeping your fleet of servers consistent and secure.
Figure 3. Multisystem update for PowerEdge servers and chassis
Virtualization View
The integration of PowerEdge into the Virtualization View consolidates and simplifies resource information about PowerEdge servers running ESXi. Available details include the OS version, model, resource consumption per virtual machine, and health issues with recommendations for remediation. A hyperlink lets you quickly navigate to the system details page for the PowerEdge server for more troubleshooting. Another hyperlink directs you to vCenter to perform virtualized resource administration.
Figure 4. PowerEdge support in the Virtualization View
Carbon footprint monitoring
CloudIQ has introduced carbon footprint analysis support for PowerEdge servers and chassis. CloudIQ takes power and energy metrics and calculates carbon emissions based on international standards and conversion factors for location. CloudIQ Administrators can override and customize these values with their own unique location emission factors.
Figure 5. Energy, power, and carbon emissions for a PowerEdge server
Custom reports and IT integrations
You can generate custom reports using both tables and charts for PowerEdge servers:
- Tables are available to provide lists of assets, code versions, contract information, capacity metrics, and average performance metrics.
- Charts can be used to see historical performance trends and performance anomalies.
You can also take advantage of custom tags in your reports. For example, you can create a list of PowerEdge servers in a certain business unit with their BIOS and firmware versions, contract expiration dates, average power consumption, and service tags. And with Webhooks and REST API access, you can integrate data and events from CloudIQ with ServiceNow, Slack, and other IT tools to help you monitor your entire Dell IT infrastructure.
Figure 6. Custom reporting table for PowerEdge with custom tags
Conclusion
As IT resources become more remote and isolated, it has become increasingly time consuming to maintain, manage, and secure resources in the data center and at the edge. CloudIQ simplifies monitoring and management by providing a single portal to view all your PowerEdge servers across your entire environment. With cybersecurity monitoring of PowerEdge servers and chassis, you can quickly see where security configuration settings may be incorrectly set or accidentally changed, opening those systems to cyberattacks, and receive instructions to remediate. With the new maintenance and management features, CloudIQ simplifies the process of keeping your entire fleet at consistent, secure, and desired BIOS and firmware versions. The carbon footprint page in CloudIQ helps you meet sustainability goals. And with Webhook and REST API support, CloudIQ can be integrated with other IT tools to help you monitor not only your PowerEdge servers, but your entire Dell IT portfolio.
Resources
This Knowledge Base Article discusses how to onboard PowerEdge devices to CloudIQ.
For a quick demo about CloudIQ PowerEdge support, see the CloudIQ videos section on the Info Hub.
Direct from Development Tech Note: Dell CloudIQ Cybersecurity for PowerEdge: The Benefits of Automation
See other informative blogs: Overview of CloudIQ, Proactive Health Scores, Capacity Monitoring and Planning, Cybersecurity, and Custom Reports and Tags.
How do you become more familiar with Dell Technologies and CloudIQ? The Dell Technologies Info Hub site provides expertise that helps to ensure customer success with Dell Technologies platforms. We have CloudIQ demos, white papers, and videos available at the Dell Technologies CloudIQ page. Also, feel free to reference the white paper CloudIQ: A Detailed Overview which provides an in-depth summary of CloudIQ.
Author: Derek Barboza, Senior Principal Engineering Technologist