
Breaking down the barriers for VDI with VxRail and NVIDIA vGPU
Wed, 21 Apr 2021 15:17:54 -0000
|Read Time: 0 minutes
Desktop transformation initiatives often lead customers to look at desktop and application virtualization. According to Gartner, “Although few organizations planned for the global circumstances of COVID-19, many will now decide to have some desktop virtualization presence to expedite business resumption.”
However, customers looking to embrace these technologies have faced several hurdles, including:
- Significant up-front CapEx investments for storage, compute, and network infrastructure
- Long planning, design, and procurement cycles
- High cost of adding additional capacity to meet demand
- Difficulty delivering a consistent user experience across locations and devices
These hurdles have often caused desktop transformation initiatives to fail fast, but there is good news on the horizon. Dell Technologies and VMware have come together to provide customers with a superior solution stack that will allow them to get started more quickly than ever, with simple and cost-effective end-to-end desktop and application virtualization solutions using NVIDIA vGPU and powered by VxRail.
Dell Technologies VDI solutions powered by VxRail
Dell Technologies VDI solutions based on VxRail feature a superior solution stack at an exceptional total cost of ownership (TCO). The solutions are built on Dell EMC VxRail and they leverage VMware Horizon 8 or Horizon Apps and NVIDIA GPU for those who need high-performance graphics. Wyse Thin and Zero client, OptiPlex micro form factor desktop, and Dell monitors are also available as part of these solutions. Simply plug in, power up, and provision virtual desktops in less than an hour, reducing the time needed to plan, design, and scale your virtual desktop and application environment.
VxRail HCI system software provides out-of-the-box automation and orchestration for deployment and day-to-day system-based operational tasks, reducing the overall IT OpEx required to manage the stack. You are not likely to find any build-it-yourself solution that provides this level of lifecycle management, automation, and operational simplicity
Dell EMC VxRail and NVIDIA GPU a powerful combination
Remote work has become the new normal, and organizations must enable their workforces to be productive anywhere while ensuring critical data remains secure.
Enterprises are turning to GPU-accelerated virtual desktop infrastructure (VDI) because GPU-enabled VDI provides workstation-like performance, allowing creative and technical professionals to collaborate on large models and access the most intensive 3D graphics applications.
Together with VMware Horizon, NVIDIA virtual GPU solutions help businesses to securely centralize all applications and data while providing users with an experience equivalent to the traditional desktop.
NVIDIA vGPU software included with the latest VMware Horizon release, which is available now, helps transform workflows so users can access data outside the confines of traditional desktops, workstations, and offices. Enterprises can seamlessly collaborate in real time, from any location, and on any device.
With NVIDIA vGPU and VMware Horizon, professional artists, designers, and engineers can access new features such as 10bit HDR and high-resolution 8K display support while working from home by accessing their virtual workstation.
How NVIDIA GPU and Dell EMC VxRail power VDI
In a VDI environment powered by NVIDIA virtual GPU, the virtual GPU software is installed at the virtualization layer. The NVIDIA software creates virtual GPUs that enable every virtual machine to share a physical GPU installed on the server or allows for multiple GPUs to be allocated on a single VM to power the most demanding workloads. The NVIDIA virtualization software includes a driver for every VM. Because work that was previously done by the CPU is offloaded to the GPU, the users, even demanding engineering and creative users, have a much better experience.
Virtual GPU for every workload on Dell EMC VxRail
As more knowledge workers are added on a server, the server will run out of CPU resources. Adding an NVIDIA GPU offloads CPU operations that would otherwise use the CPU, resulting in an improved user experience and performance. We used the NVIDIA nVector knowledge worker VDI workload to test user experience and performance with NVIDIA GPU. The NVIDIA M10, T4, A40, RTX6000/8000 and V100S, all of which are available on Dell EMC VxRail, achieve similar performance for this workload.
Customers are realizing the benefits of increased resource utilization by leveraging GPU-accelerated Dell EMC VxRail to run virtual desktops and workstations. They are also leveraging these resources to run compute workloads, for example AI or ML, when users are logged off. Customers who want to be able to run compute workloads on the same infrastructure on which they run VDI, might leverage a V100S to do so. For the complete list, see NVIDIA GPU cards supported on Dell EMC VxRail.
Conclusion
With the prevalence of graphics-intensive applications and the deployment of Windows 10 across the enterprise, adding graphics acceleration to VDI powered by NVIDIA virtual GPU technology is critical to preserving the user experience. Moreover, adding NVIDIA GRID with NVIDIA GPU to VDI deployments increases user density on each server, which means that more users can be supported with a better experience.
To learn more about measuring user experience in your own environments, contact your Dell Account Executive.
Useful links
Video: VMware Horizon on Dell Technologies Cloud
Dell Technologies Solutions: Empowering your remote workforce
Certified GPU for VxRail: NVIDIA vGPU for VxRail[
Everything VxRail: Dell EMC VxRail
VDI Design Guide: VMware Horizon on VxRail and vSAN Ready Nodes
Latest VxRail release: Simpler cloud operations and more deployment options!
Related Blog Posts

Next-Generation Graphics Acceleration for Digital Workplaces from Dell EMC and NVIDIA
Fri, 09 Dec 2022 13:58:56 -0000
|Read Time: 0 minutes
Originally published June 2019
For most organizations undergoing a digital transformation, maintaining a good user experience on virtual desktops—an essential component of digital workplaces—is a challenge. Users naturally compare their new virtual desktop experience to their previous physical endpoint experience. As the user experience continues to gain importance in digital workplaces (see this blog for more information), it is essential that virtualized environments keep pace with growing demands for user experience improvements.
This focus on the new user experience is being addressed by developers of modern-day operating systems and applications, who strive to meet the high expectations of their consumers. For example, the Windows 10 operating system, which plays a significant role in today's digital transformation initiatives, is more graphics-intensive than its predecessors. A study by Lakeside Software's SysTrack Community showed a 32 percent increase in graphics requirements when you move from Windows 7 to Windows 10. Microsoft Office applications (PowerPoint, Outlook, Excel, and so on), Skype for Business collaboration software, and all modern-day web browsers are designed to use more graphics acceleration in their newest releases.
Dell EMC Ready Solutions for VDI with NVIDIA Tesla T4 GPU
Dell EMC Ready Solutions for VDI, coupled with NVIDIA GRID Virtual PC (GRID vPC) and Virtual Apps (GRID vApps) software, provides comprehensive graphics acceleration solutions for your desktop virtualization workloads. The core of the NVIDIA GRID software is NVIDIA vGPU technology. This technology creates virtual GPUs, which enables sharing of the underlying GPU hardware among multiple users or virtual desktops running concurrently on a single host. This video compares the quality of a “CPU-only” VDI desktop with a VDI desktop powered by NVIDIA vGPU technology.
The latest NVIDIA GPU offering that supports virtualization is the NVIDIA Tesla T4, which is a universal GPU that can cater to a variety of workloads. The Tesla T4 comes with a 16 GB DDR6 memory. It operates at 70 W, providing higher energy efficiency and lower operating costs than its predecessors, and has a single-slot PCIe form factor. You can configure up to six Tesla T4s in a single Dell EMC PowerEdge R740xd server, providing the highest density for GPU-accelerated VMs in a Dell EMC server. For more details about the NVIDIA Tesla T4 GPU, see the Tesla T4 for Virtualization Technology Brief.
Image courtesy NVIDIA Corporation
Figure 1. NVIDIA vGPU technology stack
Tesla T4 vs. earlier Tesla GPU cards
Let's compare the NVIDIA Tesla T4 with other widely used cards—the NVIDIA Tesla P40 and the NVIDIA Tesla M10.
Tesla T4 vs. Tesla P40:
- The Tesla T4 comes with a maximum framebuffer of 16 GB. In a PowerEdge R740xd server, T4 cards can provide up to 96 GB of memory (16 GB x 6 GPUs), compared to the maximum 72 GB provided by the P40 cards (24 GB x 3 GPUs). So, for higher user densities and cost efficiency, the Tesla T4 is a better option in VDI workloads.
- You might have to sacrifice 3, 6, 12, and 24 GB profiles when using the T4, but 2 GB and 4 GB profiles, which are the most tested and configured profiles in VDI workloads, work well with the Tesla T4. However, NVIDIA Quadro vDWS use cases, which require higher memory per profile, are encouraged to use Tesla P40.
Tesla T4 vs. Tesla M10:
- In the PowerEdge R740xd server, three Tesla M10 cards can give you the same 96 GB memory as six Tesla T4 cards in a PowerEdge R740xd server. However, when it comes to power consumption, the six Tesla T4 cards consume only 420 W (70 W x 6 GPUs), while the three Tesla M10 GPUs consume 675 W (225 W x 3 GPUs), a substantial difference of 255 W per server. When compared to the Tesla M10, the Tesla T4 provides power savings, reducing your data center operating costs.
- Tesla M10 cards support a 512 MB profile, which is not supported by the Tesla T4. However, the 512 MB profile is not a viable option in today’s modern-day workplaces, where graphics-intensive Windows 10 operating systems, multi-monitors, and 4k monitors are prevalent.
The following table provides a summary of the Tesla T4, P40, and M10 cards.
Table 1. Comparison of NVIDIA Tesla T4, P40 & M10
GPU | Form factor | GPUs/board | Memory size | vGPU profiles | Power |
T4 | PCIe 3.0 single slot | 1 | 16 GB GDDR6 | 1 GB, 2 GB, 4 GB, 8 GB, 16 GB | 70 W |
P40 | PCIe 3.0 dual slot | 1 | 24 GB GDDR5 | 1 GB, 2 GB, 3 GB, 4 GB, 6 GB, 8 GB, 12 GB, 24 GB | 250 W |
M10 | PCIe 3.0 dual slot | 4 | 32 GB GDDR5 | .5 GB, 1 GB, 2 GB, 4 GB, 8 GB | 225 W |
(8 per GPU) |
GPU sizing and support for mixed workloads
With multi-monitors and 4K monitors becoming a norm in the modern workplace, streaming high-resolution videos can saturate the encoding engine on the GPUs and increase the load on the CPUs, affecting the performance and scalability of VDI systems. Thus, it is important to size the GPUs based on the number of encoding streams and required frames per second (fps). The Tesla T4 comes with an enhanced NVIDIA NVENC encoder that can provide higher compression and better image quality in H.264 and H.265 (HEVC) video codecs. The Tesla T4 can encode 22 streams at 720 progressive scan (p) resolution, with simultaneous display in high-quality mode. On average, the Tesla T4 can also handle 10 streams at 1080p and 2–3 streams at Ultra HD (2160p) resolutions. Running in a low-latency mode, it can encode 37 streams at 720p resolution, 17–18 streams at 1080p resolution, and 4–5 streams in Ultra HD.
VDI remote protocols such as VMware Blast Extreme can use NVIDIA GRID software and the Tesla T4 to encode video streams in H.265 and H.264 codecs, which can reduce the encoding latency and improve fps, providing a better user experience in digital workplaces. The new Tesla T4 NVENC encoder provides up to 25 percent bitrate savings for H.265 and up to 15 percent bitrate savings for H.264. Refer to this NVIDIA blog to learn more about the Tesla T4 NVENC encoding improvements.
The Tesla T4 is well suited for use in a data center with mixed workloads. For example, it can run VDI workloads during the day and compute workloads at night. This concept, known as VDI by Day, HPC by Night, increases the productivity and utilization of data center resources and reduces data center operating costs.
Tesla T4 testing on Dell EMC VDI Ready Solution
At Dell EMC, our engineering team tested the NVIDIA Tesla T4 on our Ready Solutions VDI stack based on the Dell EMC VxRail hyperconverged infrastructure. The test bed environment was a 3-node VxRail V570F appliance cluster that was optimized for VDI workloads. The cluster was configured with 2nd Generation Intel Xeon Scalable processors (Cascade Lake) and with NVIDIA Tesla T4 cards in one of the compute hosts. The environment included the following components:
- PowerEdge R740xd server
- Intel Xeon Gold 6248, 2 x 20-core, 2.5 GHz processors (Cascade Lake)
- NVIDIA Tesla T4 GPUs with 768 GB memory (12 x 64 GB @ 2,933 MHz)
- VMware vSAN hybrid datastore using an SSD caching tier
- VMware ESXi 6.7 hypervisor
- VMware Horizon 7.7 VDI software layer
Dell EMC Engineering used the Power Worker workload from Login VSI for testing. You can find background information about Login VSI analysis at Login VSI Analyzing Results.
The GPU-enabled PowerEdge compute server hosted 96 VMs with a GRID vPC vGPU profile (T4-1B) of 1 GB memory each. The host was configured with six NVIDIA Tesla T4 cards, the maximum possible configuration for the NVIDIA Tesla T4 in a Dell PowerEdge R740xd server.
With all VMs powered on, the host server recorded a steady-state average CPU utilization of approximately 95 percent and a steady-state average GPU utilization of approximately 34 percent. Login VSImax—the active number of sessions at the saturation point of the system—was not reached, which means the performance of the system was very good. Our standard threshold of 85 percent for average CPU utilization was relaxed for this testing to demonstrate the performance when graphics resources are fully utilized (96 profiles per host). You might get a better user experience with managing CPU at a threshold of 85 percent by decreasing user density or by using a higher-binned CPU. However, if your CPU is a previous generation Intel Xeon Scalable processor (Skylake), the recommendation is to use only up to four NVIDIA Tesla cards per PowerEdge R740xd server. With six T4 cards per PowerEdge R740xd server, the GPUs were connected to both x8 and x16 lanes. We found no issues using both x8 and x16 lanes and, as indicated by the Login VSI test results, system performance was very good.
Dell EMC Engineering performed similar tests with a Login VSI Multimedia Workload using 48 vGPU-enabled VMs on a GPU-enabled compute host, each having a Quadro vDWS-vGPU profile (T4-2Q) with a 2 GB frame buffer. With all VMs powered on, the average steady-state CPU utilization was approximately 48 percent, and the average steady-state GPU utilization was approximately 35 percent. The system performed well and the user experience was very good.
For more information about the test-bed environment configuration and additional resource utilization metrics, see the design and validation guides for VMware Horizon on VxRail and vSAN on our VDI Info Hub.
Summary
Just as Windows 10 and modern applications are incorporating more graphics to meet user expectations, virtualized environments must keep pace with demands for an improved user experience. Dell EMC Ready Solutions for VDI, coupled with the NVIDIA Tesla T4 vGPU, are tested and validated solutions that provide the high-quality user experience that today’s workforce demands. Dell EMC Engineering used Login VSI’s Power Worker Workload and Multimedia Workload to test Ready Solutions for VDI with the Tesla T4, and observed very good results in both system performance and user experience.
In the next blog, we will discuss the affect of memory speed on VDI user density based on testing done by Dell EMC VDI engineering team. Stay tuned and we’d love to get your feedback!

Porting the CUDA p2pbandwidthLatencyTest to the HIP environment on Dell PowerEdge Servers with the AMD GPU
Wed, 13 Jul 2022 14:59:25 -0000
|Read Time: 0 minutes
Introduction
When writing code in CUDA, it is natural to ask if that code can be extended to other GPUs. This extension can allow the “write once, run anywhere” programming paradigm to materialize. While this programming paradigm is a lofty goal, we are in a position to achieve the benefits of porting code from CUDA (for NVIDIA GPUs) to HIP (for AMD GPUs) with little effort. This interoperability provides added value because developers do not have to rewrite code starting at the beginning. It not only saves time, but also saves system administrator efforts to run workloads on a data center depending on hardware resource availability.
This blog provides a brief overview of the AMD ROCm™ platform. It describes a use case that ports the peer-to-peer GPU bandwidth latency test (p2pbandwidthlatencytest) from CUDA to Heterogeneous-Computing Interface for Portability (HIP) to run on an AMD GPU.
Introduction to ROCm and HIP
ROCm is an open-source software platform for GPU-accelerated computing from AMD. It supports running of HPC and AI workloads across different vendors. The following figures show the core ROCm components and capabilities:
Figure 1: The ROCm libraries stack
Figure 2: The ROCm stack
ROCm is a full package of all that is needed to run different HPC and AI workloads. It includes a collection of drivers, APIs, and other GPU tools that support AMD Instinct™ GPUs as well as other accelerators. To meet the objective of running workloads on other accelerators, HIP was introduced.
HIP is AMD’s GPU programming paradigm for designing kernels on GPU hardware. It is a C++ runtime API and a programming language that serves applications on different platforms.
One of the key features of HIP is the ability to convert CUDA code to HIP, which allows running CUDA applications on AMD GPUs. When the code is ported to HIP, it is possible to run HIP code on NVIDIA GPUs by using the CUDA platform-supported compilers (HIP is C++ code and it provides headers that support translation between HIP runtime APIs to CUDA runtime APIs). HIPify refers to the tools that translate CUDA source code into HIP C++.
Introduction to the CUDA p2pbandwidthLatencyTest
The p2pbwLatencyTest determines the data transfer speed between GPUs by computing latency and bandwidth. This test is useful to quantify the communication speed between GPUs and to ensure that these GPUs can communicate.
For example, during training of large-scale data and model parallel deep learning models, it is imperative to ensure that GPUs can communicate after a deadlock or other issues while building and debugging a model. There are other use cases for this test such as BIOS configuration performance improvements, driver update performance implications, and so on.
Porting the p2pbandwidthLatencyTest
The following steps port the p2pbandwidthLatencyTest from CUDA to HIP:
- Ensure that ROCm and HIP are installed in your machine. Follow the installation instructions in the ROCm Installation Guide at:
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html#rocm-installation-guide-v4-5
Note: The latest version of ROCm is v5.2.0. This blog describes a scenario running with ROCm v4.5. You can run ROCm v5.x, however, it is recommended that you see the ROCm Installation Guide v5.1.3 at:
https://docs.amd.com/bundle/ROCm-Installation-Guide-v5.1.3/page/Overview_of_ROCm_Installation_Methods.html. - Verify your installation by running the commands described in:
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html#verifying-rocm-installation - Optionally, ensure that HIP is installed as described at:
https://github.com/ROCm-Developer-Tools/HIP/blob/master/INSTALL.md#verify-your-installation
We recommend this step to ensure that the expected outputs are produced. - Install CUDA on your local machine to be able to convert CUDA source code to HIP.
To align version dependencies that need CUDA and LLVM +CLANG, see:
https://github.com/ROCm-Developer-Tools/HIPIFY#dependencies - Verify that your installation is successful by testing a sample source conversion and compilation. See the instructions at:
https://github.com/ROCm-Developer-Tools/HIP/tree/master/samples/0_Intro/square#squaremd
Clone this repo to perform the validation test. If you can run the following square.cpp program, the installation is successful:
Congratulations! You can now run the conversion process for the p2pbwLatencyTest. - If you use the Bright Cluster Manager, load the CUDA module as follows:
module load cuda11.1/toolkit/11.1.0
Converting the p2pbwLatencyTest from CUDA to HIP
After you download the p2pbandwidthLatencyTest, convert the test from CUDA to HIP.
There are two approaches to convert CUDA to HIP:
- hipify-perl—A Perl script that uses regular expressions to convert CUDA to HIP replacements. It is useful when direct replacements can solve the porting problem. It is a naïve converter that does not check for valid CUDA code. A disadvantage of the script is that it cannot transform some constructs. For more information, see https://github.com/ROCm-Developer-Tools/HIPIFY#-hipify-perl.
- hipify-clang—A tool that translates CUDA source code into an abstract syntax tree, which is traversed by transformation matchers. After performing all the transformations, HIP output is produced. For more information, see https://github.com/ROCm-Developer-Tools/HIPIFY#-hipify-clang.
For more information about HIPify, see the HIPify Reference Guide at https://docs.amd.com/bundle/HIPify-Reference-Guide-v5.1/page/HIPify.html.
To convert the p2pbwLatencyTest from CUDA to HIP:
- Clone the CUDA sample repository and run the conversion:
git clone https://github.com/NVIDIA/cuda-samples.git cd cuda-samples/Samples/5_Domain_Specific/p2pBandwidthLatencyTest hipify-perl p2pBandwidthLatencyTest.cu > hip_converted.cpp hipcc hip_converted.cpp -o p2pamd.ou
The following example shows the program output:
Figure 3: Output of the CUDAP2PBandWidthLatency test run on AMD GPUs
The output must include all the GPUs. In this use case, there are three GPUs: 0, 1, 2. - Use the rocminfo command to identify GPUs in the server and then you can use the rocm-smi command to identify the three GPUs in the server, as shown in the following figure:
Figure 4: Output of the rocm-smi command showing all three GPUs in the server
Conclusion
HIPify is a time-saving tool for converting CUDA code to run on AMD Instinct accelerators. Because there are consistent improvements from the AMD software team, there are regular releases in the software stack . The HIPify path is an automated way to support conversion from CUDA to a generalized framework. After your code is ported to HIP, this conversion allows for running code on different accelerators from different vendors. This feature helps to enable further developments from a common platform.
This blog showed how to convert a sample use case from CUDA to HIP using the hipify-perl tool.
Run system information
Table 1: System details
Component | Description |
Operating system | CentOS Linux 8 (Core) |
ROCm version | 4.5 |
CUDA version | 11.1 |
Server | Dell PowerEdge R7525 |
CPU | 2 x AMD EPYC 7543 32-Core Processor |
Accelerator | AMD Instinct MI210 |
References
- https://github.com/ROCm-Developer-Tools
- https://github.com/ROCm-Developer-Tools/HIPIFY
- https://github.com/NVIDIA/cuda-samples
- https://github.com/ROCm-Developer-Tools/HIP/
- https://docs.amd.com/
- https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-porting-guide.html
- https://docs.amd.com/bundle/HIP_API_Guide/page/modules.html
- https://www.amd.com/en/graphics/servers-solutions-rocm
- https://www.amd.com/system/files/documents/the-amd-rocm-5-open-platform-for-hpc-and-ml-workloads.pdf