Home > AI Solutions > Gen AI > Guides > Generative AI in the Enterprise with AMD Accelerators > Fine-tuning validation
Model customization yields an LLM that incorporates domain-specific knowledge. Our goal in this validation was not to train a model to convergence, but to demonstrate the functionality of various techniques and frameworks. The following list provides the details of our validation setup:
To run fine-tuning using torchtune, we perform the following steps:
docker run -it --shm-size 250G --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ipc host --network host --device=/dev/kfd --device=/dev/dri --group-add video -v /dev:/dev -v /sys:/sys --privileged -v /cm/shared/apps/waco/:/waco -v <powerscalef710 mount path for dataset and model> <base container location>
tune run --nnodes=4 --nproc_per_node=8 --rdzv_id=456 --rdzv_backend=c10d --node-rank=1 --rdzv_endpoint=<node_name>:29603 lora_finetune_distributed --config <config_file location> output_dir=<output directory in PowerScale F710> checkpointer.output_dir=<checkpoint directory in PowerScale F710> dtype=bf16"
Training starts and then provides output similar to the following example:
INFO:torchtune.utils.logging:Model checkpoint of size 9.17 GB saved to /aipsf710-22/project-baylor/torchtune/lora-70b-bf16-sn/hf_model_0001_0.pt
INFO:torchtune.utils.logging:Model checkpoint of size 9.33 GB saved to /aipsf710-22/project-baylor/torchtune/lora-70b-bf16-sn/hf_model_0002_0.pt
INFO:torchtune.utils.logging:Model checkpoint of size 10.00 GB saved to /aipsf710-22/project-baylor/torchtune/lora-70b-bf16-sn/hf_model_0003_0.pt
INFO:torchtune.utils.logging:Model checkpoint of size 9.93 GB saved to/aipsf710-22/project-baylor/torchtune/lora-70b-bf16-sn/hf_model_0004_0.pt
1|939|Loss: 0.9668265581130981: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 939/939 [1:32:18<00:00, 5.65s/it]
Model checkpoints are created in the folder provided in the torchtune launch command.